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X-ray scattering factor for NH g at rest from the ob- 
served radial scattering factorsfo, f4. Such a result yields, 
however, only the qualitative conclusion, already 
reached in the X-ray analysis, that the one-centre SCF 
calculations do not give large enough non-spherical 
components, i.e., they do not yield a sharp enough 
concentration of charge around the hydrogen atoms. 
Observations on another dynamical state (e.g. tempera- 
ture variation, isotopic replacement ND4) would give, 
at least in principle, complementary information on 
the physical basis of this deviation. Such studies would 
gain substantially from theoretical scattering factors of 
free NH +, with the observed bond length and with 
some internal dynamics included to account for the 
observed average bond vibrations. The anisotropy of 
chlorine vibrations is, in any case, far too small to 
cause observable effects in the X-ray scattering factor 
of chlorine. 

We are indebted to Dr. R. Tellgren for providing 
the single crystal used for the neutron diffraction 
work, and to Miss S. Rosten for her invaluable help 
with the computational work. This study was finan- 
cially supported by the National Council for Science, 
Finland (K.K-S. and M.M.) and by the University of 
Helsinki (M.M.). 
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Restriction of the Number of Terms in the Sayre-Hughes Equation Connected with a 
Criterion to Establish the Absence of Atomic Overlap in Projection 
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In the Sayre-Hughes equation the variable reciprocal-lattice vector ranges over the whole reciprocal 
net. It is shown that under the condition that a projection along a zone axis has no overlapping atoms 
the variable reciprocal-lattice vector can be restricted to range over a plane of the reciprocal net. A 
fortiori if a projection on an axis is free from overlap the variable vector can be restricted to range 
over a row of the reciprocal net. Criteria to determine the projections for which these conditions are 
best fulfilled are given. These criteria involve the absolute values of the structure factors only. The 
theory is illustrated by a test employing normalized structure factors calculated from atomic coordi- 
nates. 

Introduction 

It is always possible to determine the three-dimen- 
sional structure from any two resolved two-dimensional 
projections for which the projection on their inter- 
secting line is resolved. In the case that only one two- 

dimensional projection is resolved use can be made of 
generalized projections to find the three-dimensional 
structure. 

For reciprocal space it follows that under the 
conditions mentioned above, a restricted number of 
structure factors determines the others (at the given 

A C 32A - 8* 
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resolution). In this paper we shall first show that 
under these circumstances the number of terms in 
the Sayre-Hughes equation can be restricted. The 
resulting equations will be called reduced Sayre- 
Hughes equations. Secondly we shall show how to 
find those projections for which the conditions of no 
atomic overlap are best fulfilled. Only the absolute 
values of structure factors enter into this procedure. 

Reduced Sayre-Hughes equations 

Denote by N the number of atoms in the unit cell, by 
Zj the number of electrons of atom j, and define 

N 

0 - , = ~  Z~. (1) 
] = 1  

Define the normalized structure factor Eh and the 
normalized structure factor of the squared structure 
E~. by 

E~= "2 Zs exp2rcih r s (2) 
j = 1 ff--~~-- 

and 
N 7 2  

E [  = ~ ~ exp 2rcih. rj (3) 
j = l  4 

respectively. 
With these definitions the Sayre-Hughes equation 

(Sayre, 1952; Hughes, 1953) is written as 

<E,,Eh_k>. EI ,  = (4) 

where k is a vector which ranges throughout the recip- 
rocal net. We shall show that if certain conditions, 
to be specified below, are fulfilled, it suffices if k ranges 
over planes or rows of the reciprocal net. 

(a) If there are no atoms with the same x coordinate, 
g~t~j= ~ij, i,j= 1,. . . ,  N, then 

(E,,Eh_,,>kl= 1 -  ~ ~ Z, Zj 
0-2 i = 1  j = l  

x <exp 2~zi[h. rj + k .  ( r i -  rj)])k, 

- Zj {exp 2rd[h. r~ 
0"2 t = 1  ' =  

0-1/2 
. . . . . .  E~ -t- k2(yi-yj)+k3(z~-zj)]} 6xix i -  tr2 , 

E~= ~0-2 (EkEh-k>k, • (5a) 

(b) If there are no atoms with the same (x,y) coordi- 
nates, 6xmO,~,j= O~j, i,j = 1 , . . . ,  N, then 

E~,= ~a/z0-2 <EkEh-,,>k,k2 (6a) 

Equations (5a) and (6a) will be referred to as the 
reduced Sayre-Hughes equations.* 

In (5a) k2 and k3 are fixed. For kz=O and k 3=h3, 
only projection reflexions are needed to calculate E~,. 
If all the projection reflexions Ehlo,3 and Ehl,20 are 
known, all the El, can be calculated. This means that 
the three-dimensional structure can be obtained from 
the b and c projections. 

In (6a) k3 is fixed. If all the Eh,h21 are known (then 
the E, lk2 ~- are also known) all the E~u~20 and the E],lh2z 
can be calculated. Next for equal-atom structures 
(E~=Eh), all the EhlhZ3 etc. can be calculated" the 
generalized projection for k3 = 1 suffices to calculate the 
three-dimensional structure. Again for equal-atom 
structures it can be seen that if all the Ehah,h3 with h3 
fixed are known, all the Eh~,z,,~,3 for all integers n can 
be calculated. For structures consisting of unequal 
atoms we can use 

0- 3 
E~-~ ,,-a/2~,/2 Eh (7) 

~ 2  v 4  

(Cochran & Woolfson, 1955). These results can be 
interpreted as follows. The electron density is given by 

1 
O(x,y,z)= C ~ ~°ka(x'Y) exp -2rdk3z,  (8) 

where the generalized projections Ok3(X,y) along c are 
non-zero only if (x,y)=(xj,yj), j =  1 , . . . , N .  From the 
condition gxmgyaj=go, i,j= 1, . . . ,N,  it follows that 
Q(xj,yj, z) is non-zero only if z=zj. Therefore the real 
parts of the terms in the right-hand side of (8) with 
k3#0 have at least a maximum for z=zj. For k3=0 
no information about the value for z~ can be obtained. 
For k3 = 1 there is only one maximum. The position of 
this maximum gives the value for zj. In general the 
term with k3#0 has [k3l maxima which lead to [ka[ 
possible values for z~. Further, we note that from (6a) 
it can be shown that a generalized projection of the 
squared structure is proportional to the product of two 
generalized projections. 

In considering the similarity between the modulus 
projections 10k~(x,y)l and the projection with k3=0, 
especially when there are no atoms which overlap in 
the c projection, Vainshtein (1959a, b) was led to 
equalities which interrelate the structure factors of 
parallel reciprocal-lattice planes. Analogously he has 
found equalities which interrelate the structure factors 
of parallel reciprocal-lattice rows for the case that no 
atoms overlap in the projection on an axis. In fact his 
equalities can be obtained from special cases of the 
reduced Sayre-Hughes equations. 

When (5a) and (6a) are compared with (4) it is seen 
that the stronger the conditions for the r~, the more 
the part of the reciprocal net through which k ranges 

* A probabilistic approach leads to (4) containing condi- 
tional averages (Hauptman, 1970). Analogous results can be 
obtained for (5a) and (6a). 
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can be restricted. If in (5a) k2 and ka are not fixed but 
take on a restricted number of values then the con- 
dition fi~x.=6u is relaxed. The same holds for the 

• , / • , . 

condition O~x.Or,~i=6u ~f m (6a) k3 takes on a res- 
tricted number of values. We shall gwe an example. 
Assume that only atoms 1 and 2 have the same (x,y) 
coordinates. Then 

N 

(EkEh-k)k,t,2 1 ~ Z Z ,Z  s 
kg=k31,k32 a 2  l = 1  = 

~< (exp 27rih. rs}~t~j~rtrj 

× (exp 

a~/~ Zl Z2 
- Eg+ - -  {exp 2rci(hlxl +h2yi)} 

a 2 0- 2 

x {exp 2zrih3z2(exp 2~zik3(zl--Zz))k3=kal,ka2 

+ exp 2rcihazl (exp 2rcik3(z2 - zx))k3 =kaa, Ka2}" 

If k3~ and k32 are chosen in such a way that 

k31(zt- z2)=k32(z1- z2)-b 1 (mod 1), 

then the result is 

a2 <E,,Eh-k>k,k2 , 

which should be compared with (6a). 

(9) 

(lO) 

O v e r l a p  c r i t e r i a  

For h = 0  we find from the reduced Sayre-Hughes 
equations 

(Igkl2)k~ = 1 

and 

( I E k l 2 ) ~ =  1 if ( 1 2 )  

Compare with 

if 6:,~,,j=c~ u, i,j= 1 , . . . , N ,  (11) 

fi~,xj6yo,/= fiu, i,j = 1, . . . ,  N .  

(IEl, l~h,= 1. (13) 

Equating the mean values in (12) for different values 
of k3 a relation between the absolute values of structure 
factors is obtained. Vainshtein (1959a, b) has pointed 
out that the fulfilment of such a relation indicates the 
absence of atomic overlap in projection and the validity 
of his equalities between the structure factors of 
parallel reciprocal-lattice planes. It also indicates the 
validity of the reduced Sayre-Hughes equation (6a). 
As quantitative criteria we define 

K~= (((IEkl~)~, - 1}z)~k~, (14) 

which approaches zero if there 'is no atomic overlap on 
the a axis, and 

/(12= ({([EklZ)klku - 1 )Z)k 3 , (15) 

which approaches zero if there is no atomic overlap in 
the c projection. For comparison define 

K -  <{lEvi ~ -  1 )2)k. (16) 

We shall show that K~ and/£12 give an impression of 
the overlap in the projections on a and along c respec- 
tively. An interpretation of K has been given by 
Hauptman (1964). Here we shall show its connexion 
with/£1 and/£12. 

If only two atoms i a n d j  have the same x coordinate 
then 

(IEkla)kl 1+ 2Z ,Z  s = cos 2rc[k2(y~ - Ys) + k3(z~ - zs)] , 
a2 

(17) 
and 

4Z~Z2 (cos 2 2~z[k2(y,-Ys) + k3(zi-  Zs)])k2ka K1- 

2 2 
- 2ZJ-Zs (l+fi2,,2,,fi2~,2z,) (18) 

g~ 

where the subscripts 2yt etc. are shorthand notations 
for 2y~ (mod 1) etc. In this case the minimum value of 
K1 is 2Z2Z2/a~. It can be shown that every pair of 
atoms with the same x coordinate gives a contribution 
to K1 of at least 2 z z 2Z ~Zs/a2. If all atoms have the same 
x coordinate then the minimum value of/£1 is 

N N 

2Z ,Z s/a,= l a,/a] . (i) Z Z  _ 

i = 1  j = l  i<j 

Next we consider the additional effect of a centre of 
symmetry. If two atoms i and j, related by a centre of 
symmetry, have the same x coordinate, this pair of 
atoms will give a contribution to/(1 of at least 2Z~/a~. 
If two independent atoms i and j have the same x 
coordinate not equal to zero or to a half then there are 
two pairs of atoms which contribute to/£1. These two 
pairs together give a contribution of at least 8Z2tZJa2.2 2 
If the x coordinates of two independent atoms i and j 
are equal to zero (half) then the centrosymmetrically 
related atoms also have x coordinates equal to zero 
(half). These four atoms together give a contribution to 
K 1 of at least (2Z 4 + 2Z 4 + 2 2 2 16ZiZs)/tr2. If all atoms 
have the same x coordinate, whence xj = 0(1) for all j ,  
the minimum value of/£1 can be shown to be 

N/2 N/2 N/2 
( ~  2Z~+ ~ ~ 16Z2Z~)/az2=2-3a4/a 2. (ii) 
j = l  i = 1  j = l  i<j  

The same results hold for/(12 if not only the x coor- 
dinates, but also the corresponding y coordinates are 
equal. 

Hauptman (1964) found that the value of K is 
equal to (i) for structures without coinciding inter- 
atomic vectors and to (ii) if there are only coinciding 
interatomic vectors as a consequence of a centre of 
symmetry. Clearly these values for K can be inter- 
preted as the result of the overlap of all atoms, i.e. the 
result of projecting on a point. 

The contributions to/£1 and K12 contain the squares 
of the Z~Zj. Therefore/£1 and/£12 are related to atomic 
overlap in projections of the squared structure. Also, 
they indicate the reliability of the Eg calculated with 
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the reduced Sayre-Hughes equations in the case that 
the conditions are not fulfilled. 

Different projection directions 

In the preceding only the conditions of no overlap in 
the projection on a and no overlap in the c projection 
have been considered. These conditions lead to the 
reduced Sayre-Hughes equations (5a) and (6a). Of 
course the absence of atomic overlap in other one- 
and two-dimensional projections leads to analogous 
results. 
Define 

a' =ul a + u 2 b +  u3 c ,  
b'=vl  a + v 2 b + v a  c ,  
e' = wxa + w2b -t- w3c, 

where u l , . . . ,  w3 are integers so that V ' ~ .  = V~..  If no 
atoms overlap in the projection on a' then, analogous 
to (5a), 

Eg = ~ <EkEh-l,>k , (5b) 
k l V  I -I-k2v 2 + k3v  3 = n o 

k l w l + k 2 w 2 + k 3 w  3 = n w 

where no and nw are fixed integers [to be compared 
with k 2 and k3 in (5a)]. If no atoms overlap in the c' 
projection then, analogous to (6a), 

Eg = ~ <EkEh_k> k , (6b) 
k l W l + k 2 w 2 + k 3 w  3 = n w 

where nw is a fixed integer [to be compared with ka in 
(6a)]. The corresponding overlap criteria are 

K~=<{<IE,.IZ>,. -1}2>,,o.~ (14b) 
k l V l + k 2 v 2  + k 3 v 3  : n v 
k i w i  + k 2 w 2 + k 3 w 3  = n w 

and 

K~=<{<IE~I~>~ - l}~>.~ (15b) 
k i w i  + k 2 w  2 + k3w3  = n w 

respectively. 

is as large as possible is obtained for nw=½q, where 
q=hlwl+h2w2+h3wa. If q is odd then this plane does 
not contain lattice points (nw must be an integer). So 
the optimum value for nw, giving in general the largest 
number of terms in (6b), is nwo=½q+ ½ (q odd). Both 
values give the same set of terms EkEh-k. If q is even 
then for nw=½q only half the terms are independent. 
Consequently the optimum value for nw is in general 
nwo=½q + 1 (q even). Again both values give the same 
set of terms EkEh-k. 

The determination of the optimum pair (nv, nw)o in 
(5b) is more intricate. However, the requirement of no 
atomic overlap on an axis will seldom be fulfilled and 
there is little practical need to pursue this aspect. 

A test 

The dimethyl ester of meso-tartaric acid (Kroon & 
Kanters, 1973), space group PT, with six O and six C 
atoms in the asymmetric unit was used to test the 
theory in the preceding sections. From the atomic coor- 

Fig. 1. Two limiting spheres I and II with an intersecting 
reciprocal-lattice layer. The origin of II is shifted over the 
vector h with respect to the origin of I. The reciprocal-lattice 
vectors k and - ( h - k )  correspond to terms EkEh-k in the 
Sayre-Hughes equation. 

The optimum value for n .  in (6b) 

Fig. 1 shows two limiting spheres I and II. The origin 
of II is shifted over the vector h with respect to the 
origin of I. Let the lattice point (111213) in I be connected 
with El and in II with E~'. Then the coinciding points 
pertaining to k in I and to - 0 a - k )  in II are associated 
with terms EkEh-k in the Sayre-Hughes equation. 
Only half of these coinciding points supply independent 
terms, because the lattice points pertaining to k in I 
and to - ( h - k )  in II correspond to the same terms as 
do the lattice points related to h - k  in I and to - k  
in II. 

Coinciding lattice points lying on a plane correspond 
to terms in the reduced Sayre-Hughes equation (6b) 
[coinciding lattice points lying on a row correspond to 
terms in the reduced Sayre-Hughes equation (5b)]. It 
can be shown that the plane parallel to the a'*b'* plane 
for which the surface inside both sphere I and sphere II 

0.028 
t 
K~2 

0.024 

0.020 

0.01, 

0.01; 

0.00~ 

0.004 

, , , , ,0 i lk  ) I lK ) A  
~, ~ o o o O o o , _ ~ , _  ~ == 

~ o 

0.24 

0.20 RI 2 

0.16 

0.12 

0.08 

0.04 

Fig. 2. K~z and Rl2 values plotted against the length of the 
(wl, w2, w3) axis. 
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b s i ne  , ~  

/.'o° 
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.o)  -oo o _ 

o sinIB b s,ny 

(a) (b) 

Fig. 3. The [001] projection (a) and the [100] projection (b). 
© Carbon atom; • Oxygen atom. 

dinates 1868 normalized structure factors (Cu Ka sphere) 
were calculated. Next, for 14 projection directions (wx, 
w2, w3) we calculated the overlap criterion 

Wnw{<[gk[2>k --1} 2 
K~2= "~- ......... hw, +kzwz+k3w3 =,~, ....... (14C) 

 ,W.w 
n W 

The weighting factor W,,~ is equal to the number of 
terms ]Ek[ z with nw fixed and copes with the different 
standard deviations for the ([Ek[2>. For the corres- 
ponding reduced Sayre-Hughes equations having 
optimum values for n~, we calculated the residual 

]Eh-- --0"322/2 <EkEh- k>k I 
RI2 ....................... (7-3 ........... klWl+k2w2+k3w3=nw°, (19) 

 je.i 
where the summation extends over the largest 500 
]Ehl's. 

In Fig. 2 the values of K~2 and R~2 are plotted 
against the length of the (wx, w2, w3) axis. It is seen 
that the general behaviour of Rx2 is the same as that 
of K~2. Further it should be noted that the minimum 
of Rx2 corresponds to the minimum of the overlap 
criterion. In this minimum Rx2 is equal to 0.107; this 
value is not much larger than 0.078, which is obtained 
if in (19) no restrictions are imposed on k. 

The values for K~2 are related to atomic overlap in 
projections. Fig. 3 gives the projections along the 

two shorter axes. Owing to the limited number of 
structure factors, point atoms are smeared out in a 
Fourier projection. Taking into account only the first 
diffraction ring (James, 1962), in such a way that the 
entire electron density of an atom is supposed to lie 
inside this ring, the standard deviation for the radius 
of an atom can be calculated to be 0.25 A (Cu Kc~ 
sphere). This value is used for the atomic radii in Fig. 3. 
The [001] projection [Fig. 3(a)] contains two pairs of 
almost completely overlapping atoms. For the case 
of complete overlap they would give a contribution 
to the overlap criterion of at least 2 2 2 8ZcZo/a2 = 0-0128 
(Zc and Zo are the atomic numbers of C and O 
respectively). The K'~2 value for the [001] projection is 
equal to 0.0112. Clearly this value is related to the 
two pairs of almost completely overlapping atoms. 
The minimum of K;2 (Fig. 2), equal to 0.0021, cor- 
responds to the [100] projection. From Fig. 3(b) it is 
seen that in this projection there is no atomic overlap. 

It appears that for these examples the overlap 
criterion quite well reflects the actual atomic overlap 
in projection and that it gives an indication about the 
reliability of the corresponding reduced Sayre-Hughes 
equations. 

We thank Dr H. Krabbendam and Professor A. F. 
Peerdeman for critical reading of the manuscript. 
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